How To Understand More About Solar Panels Before You Buy Them ?

Solar Panel refers to a panel designed to absorb the sun’s rays as a source of energy for generating electricity or heating.

A PV module is a packaged, connected assembly of typically 6×10 solar cells. Solar PV panels constitute the solar array of a Photo voltaic system that generates and supplies solar electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions, and typically ranges from 100 to 320 watts.EFFICIENIES AND INVERTERS

  • Efficiencies of solar panel can be calculated by MPP (Maximum power point) value of solar panels
  • Solar Inverters convert the DC power to AC power by performing MPPT process: solar inverter samples the output Power(I-V curve) from the solar cell and applies the proper resistance (load) to solar cells to obtain maximum power.
  • MPP(Maximum power point) of the solar panel consists of MPP voltage(V mpp) and MPP current(I mpp): it is a capacity of the solar panel and the higher value can make higher MPP.

Micro-inverted solar panels are wired in parallel which produces more output than normal panels which are wired in series with the output of the series determined by the lowest performing panel (this is known as the “Christmas light effect”). Micro-inverters work independently so each panel contributes its maximum possible output given the available sunlight.


Crystalline silicon and Thin film solar cell

Market-share of PV technologies since 1990

Most solar modules are currently produced from crystalline silicon (c-Si) solar cells made of multicrystalline and monocrystalline silicon. In 2013, crystalline silicon accounted for more than 90 percent of worldwide PV production, while the rest of the overall market is made up of thin-film technologies using cadmium telluride, CIGS and amorphous silicon[7] Emerging, third generation solar technologies use advanced thin-film cells. They produce a relatively high-efficiency conversion for the low cost compared to other solar technologies. Also, high-cost, high-efficiency, and close-packed rectangular multi-junction (MJ) cells are preferably used in solar panels on spacecraft, as they offer the highest ratio of generated power per kilogram lifted into space. MJ-cells are compound semiconductors and made of gallium arsenide(GaAs) and other semiconductor materials. Another emerging PV technology using MJ-cells is concentrator photovoltaics (CPV).

Thin film

In rigid thin-film modules, the cell and the module are manufactured in the same production line. The cell is created on a glass substrate or superstrate, and the electrical connections are created in situ, a so-called “monolithic integration”. The substrate or superstrate is laminated with an encapsulant to a front or back sheet, usually another sheet of glass. The main cell technologies in this category are CdTe, or a-Si, or a-Si+uc-Si tandem, or CIGS (or variant). Amorphous silicon has a sunlight conversion rate of 6–12%.

Flexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate. If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used. If it is a conductor then another technique for electrical connection must be used. The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side (typically ETFE or FEP) and a polymer suitable for bonding to the final substrate on the other side.

Performance and degradation

Module performance is generally rated under standard test conditions (STC): irradiance of 1,000 W/m², solar spectrum of AM 1.5 and module temperature at 25 °C.

Electrical characteristics include nominal power (PMAX, measured in W), open circuit voltage (VOC), short circuit current (ISC, measured in amperes), maximum power voltage (VMPP), maximum power current (IMPP), peak power, (watt-peak, Wp), and module efficiency (%).

Nominal voltage refers to the voltage of the battery that the module is best suited to charge; this is a leftover term from the days when solar modules were only used to charge batteries. The actual voltage output of the module changes as lighting, temperature and load conditions change, so there is never one specific voltage at which the module operates. Nominal voltage allows users, at a glance, to make sure the module is compatible with a given system.

Open circuit voltage or VOC is the maximum voltage that the module can produce when not connected to an electrical circuit or system. VOC can be measured with a meter directly on an illuminated module’s terminals or on its disconnected cable.

The peak power rating, Wp, is the maximum output under standard test conditions (not the maximum possible output). Typical modules, which could measure approximately 1×2 meters or 2×4 feet, will be rated from as low as 75 watts to as high as 350 watts, depending on their efficiency. At the time of testing, the test modules are binned according to their test results, and a typical manufacturer might rate their modules in 5 watt increments, and either rate them at +/- 3%, +/-5%, +3/-0% or +5/-0%.

Solar modules must withstand rain, hail, heavy snow load, and cycles of heat and cold for many years. Many crystalline silicon module manufacturers offer a warranty that guarantees electrical production for 10 years at 90% of rated power output and 25 years at 80%.

Potential induced degradation (also called PID) is a potential induced performance degradation in crystalline photovoltaic modules, caused by so-called stray currents. This effect may cause power loss of up to 30 percent.


Solar panel conversion efficiency, typically in the 20 percent range, is reduced by dust, grime, pollen, and other particulates that accumulate on the solar panel. “A dirty solar panel can reduce its power capabilities by up to 30 percent in high dust/pollen or desert areas”, says Seamus Curran, associate professor of physics at the University of Houston and director of the Institute for NanoEnergy, which specializes in the design, engineering, and assembly of nanostructures.

Paying to have solar panels cleaned is often not a good investment; researchers found panels that hadn’t been cleaned, or rained on, for 145 days during a summer drought in California, lost only 7.4 percent of their efficiency. Overall, for a typical residential solar system of 5 kilowatts, washing panels halfway through the summer would translate into a mere $20 gain in electricity production until the summer drought ends—in about 2 ½ months. For larger commercial rooftop systems, the financial losses are bigger but still rarely enough to warrant the cost of washing the panels. On average, panels lost a little less than 0.05 percent of their overall efficiency per day.

# Top Module Producer Shipments in 2014 (MW)
1. Yingli 3,200
2. Trina Solar 2,580
3. Sharp Solar 2,100
4. Canadian Solar 1,894
5. Jinko Solar 1,765
6. ReneSola 1,728
7. First Solar 1,600
8. Hanwha SolarOne 1,280
9. Kyocera 1,200
10. JA Solar 1,173

Mounting and tracking

Main articles: Photovoltaic mounting system and Solar tracker

Solar modules mounted on solar trackers

Ground mounted photovoltaic system are usually large, utility-scale solar power plants. Their solar modules are held in place by racks or frames that are attached to ground based mounting supports. Ground based mounting supports include:

  • Pole mounts, which are driven directly into the ground or embedded in concrete.
  • Foundation mounts, such as concrete slabs or poured footings
  • Ballasted footing mounts, such as concrete or steel bases that use weight to secure the solar module system in position and do not require ground penetration. This type of mounting system is well suited for sites where excavation is not possible such as capped landfills and simplifies decommissioning or relocation of solar module systems.

Roof-mounted solar power systems consist of solar modules held in place by racks or frames attached to roof-based mounting supports. Roof-based mounting supports include:

  • Pole mounts, which are attached directly to the roof structure and may use additional rails for attaching the module racking or frames.
  • Ballasted footing mounts, such as concrete or steel bases that use weight to secure the panel system in position and do not require through penetration. This mounting method allows for decommissioning or relocation of solar panel systems with no adverse effect on the roof structure.
  • All wiring connecting adjacent solar modules to the energy harvesting equipment must be installed according to local electrical codes and should be run in a conduit appropriate for the climate conditions

Solar trackers increase the amount of energy produced per module at a cost of mechanical complexity and need for maintenance. They sense the direction of the Sun and tilt or rotate the modules as needed for maximum exposure to the light. Alternatively, fixed racks hold modules stationary as the sun moves across the sky. The fixed rack sets the angle at which the module is held. Tilt angles equivalent to an installation’s latitude are common. Most of these fixed racks are set on poles above ground.